Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            ABSTRACT We examine the azimuthal variations in gas-phase metallicity profiles in simulated Milky Way-mass disc galaxies from the Feedback in Realistic Environments (FIRE-2) cosmological zoom-in simulation suite, which includes a sub-grid turbulent metal mixing model. We produce spatially resolved maps of the discs at z ≈ 0 with pixel sizes ranging from 250 to 750 pc, analogous to modern integral field unit galaxy surveys, mapping the gas-phase metallicities in both the cold and dense gas and the ionized gas correlated with H ii regions. We report that the spiral arms alternate in a pattern of metal rich and metal poor relative to the median metallicity of the order of ≲0.1 dex, appearing generally in this sample of flocculent spirals. The pattern persists even in a simulation with different strengths of metal mixing, indicating that the pattern emerges from physics above the sub-grid scale. Local enrichment does not appear to be the dominant source of the azimuthal metallicity variations at z ≈ 0: there is no correlation with local star formation on these spatial scales. Rather, the arms are moving radially inwards and outwards relative to each other, carrying their local metallicity gradients with them radially before mixing into the larger-scale interstellar medium. We propose that the arms act as freeways channeling relatively metal poor gas radially inwards, and relatively enriched gas radially outwards.more » « less
- 
            Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) imaging of molecular gas across the full star-forming disk of the barred spiral galaxy M83 in CO( J = 1–0). We jointly deconvolve the data from ALMA’s 12 m, 7 m, and Total Power arrays using the MIRIAD package. The data have a mass sensitivity and resolution of 10 4 M ⊙ (3 σ ) and 40 pc—sufficient to detect and resolve a typical molecular cloud in the Milky Way with a mass and diameter of 4 × 10 5 M ⊙ and 40 pc, respectively. The full disk coverage shows that the characteristics of molecular gas change radially from the center to outer disk, with the locally measured brightness temperature, velocity dispersion, and integrated intensity (surface density) decreasing outward. The molecular gas distribution shows coherent large-scale structures in the inner part, including the central concentration, offset ridges along the bar, and prominent molecular spiral arms. However, while the arms are still present in the outer disk, they appear less spatially coherent, and even flocculent. Massive filamentary gas concentrations are abundant even in the interarm regions. Building up these structures in the interarm regions would require a very long time (≳100 Myr). Instead, they must have formed within stellar spiral arms and been released into the interarm regions. For such structures to survive through the dynamical processes, the lifetimes of these structures and their constituent molecules and molecular clouds must be long (≳100 Myr). These interarm structures host little or no star formation traced by H α . The new map also shows extended CO emission, which likely represents an ensemble of unresolved molecular clouds.more » « less
- 
            Abstract We report the discovery of two kinematically anomalous atomic hydrogen (H i ) clouds in M 100 (NGC 4321), which was observed as part of the Deciphering the Interplay between the Interstellar medium, Stars, and the Circumgalactic medium (DIISC) survey in H i 21 cm at 3.3 km s −1 spectroscopic and 44″ × 30″ spatial resolution using the Karl G. Jansky Very Large Array. 15 15 The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. These clouds were identified as structures that show significant kinematic offsets from the rotating disk of M 100. The velocity offsets of 40 km s −1 observed in these clouds are comparable to the offsets seen in intermediate-velocity clouds (IVCs) in the circumgalactic medium (CGM) of the Milky Way and nearby galaxies. We find that one anomalous cloud in M 100 is associated with star-forming regions detected in H α and far-ultraviolet imaging. Our investigation shows that anomalous clouds in M 100 may originate from multiple mechanisms, such as star formation feedback-driven outflows, ram pressure stripping, and tidal interactions with satellite galaxies. Moreover, we do not detect any cool CGM at 38.8 kpc from the center of M 100, giving an upper limit of N(H i ) ≤1.7 × 10 13 cm −2 (3 σ ). Since M 100 is in the Virgo cluster, the nonexistence of neutral/cool CGM is a likely pathway for turning it into a red galaxy.more » « less
- 
            ABSTRACT We study the spatially resolved (sub-kpc) gas velocity dispersion (σ)–star formation rate (SFR) relation in the FIRE-2 (Feedback in Realistic Environments) cosmological simulations. We specifically focus on Milky Way-mass disc galaxies at late times (z ≈ 0). In agreement with observations, we find a relatively flat relationship, with σ ≈ 15–30 km s−1 in neutral gas across 3 dex in SFRs. We show that higher dense gas fractions (ratios of dense gas to neutral gas) and SFRs are correlated at constant σ. Similarly, lower gas fractions (ratios of gas to stellar mass) are correlated with higher σ at constant SFR. The limits of the σ–ΣSFR relation correspond to the onset of strong outflows. We see evidence of ‘on-off’ cycles of star formation in the simulations, corresponding to feedback injection time-scales of 10–100 Myr, where SFRs oscillate about equilibrium SFR predictions. Finally, SFRs and velocity dispersions in the simulations agree well with feedback-regulated and marginally stable gas disc (Toomre’s Q = 1) model predictions, and the simulation data effectively rule out models assuming that gas turns into stars at (low) constant efficiency (i.e. 1 per cent per free-fall time). And although the simulation data do not entirely exclude gas accretion/gravitationally powered turbulence as a driver of σ, it appears to be subdominant to stellar feedback in the simulated galaxy discs at z ≈ 0.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
